If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-28y+26=0
a = 1; b = -28; c = +26;
Δ = b2-4ac
Δ = -282-4·1·26
Δ = 680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{680}=\sqrt{4*170}=\sqrt{4}*\sqrt{170}=2\sqrt{170}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-2\sqrt{170}}{2*1}=\frac{28-2\sqrt{170}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+2\sqrt{170}}{2*1}=\frac{28+2\sqrt{170}}{2} $
| -26x+2x=-52+16x | | n/3-5=14 | | 43425-325x=x | | (12-d)÷23=19 | | 3=g-66/6 | | 7d+6=97 | | 4/8=h/10 | | 3x(3x+2)=6x+144 | | 4(b-16)=8 | | 4/8=10/h | | 6x+9x+5=6/5 | | -5x+13=2(3-7x)+2x | | 6-6x=6+2x | | x-5/8=7/24 | | 90+45x=22.5x | | 1/3z-9=5 | | 8*6=w | | -12=-2w+2 | | x=2.512 | | 0.5t+0.25=2.5 | | 4x+60=8x-180 | | 23-3d=17 | | n/2+500=5000 | | 11w=5w+12 | | -2q+-3=-15 | | 15-6=v | | 23^x=91 | | 1(66788865433+5c)-766=5555555666666666 | | 5x-10=20/4 | | 36-4u-8=3u | | (7m-1)^5/2=4 | | X+3/6=2x-3/4 |